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Abstract

In healthcare product development and research, teams invest huge
amounts of time to study through publications and other relevant
resources. There is a need for a novel solution to efficiently and reliably
extract information from multiple clinical resources, in addition to
generating new insights which can only be achieved through structuring
textual information and accessible intelligent synthesis across multiple
relevant resources. We created a cloud-based solution where data from
heterogeneous sources is structured, integrated and harmonized, and
users can easily leverage the combined database to answer
domain-specific questions and generate insights efficiently in a targeted
way.

Materials and Methods

Knowledge graphs provide us the advantage to encode and leverage
relationships in addition to concepts in the context of heterogeneous data.
We leveraged graph and NLP Al techniques to build a domain-specific
knowledge graph. We extracted the biomedically-relevant subset of
wikidata, and augmented it by adding more entities and relationships from
the biomedical literature (PubMed), clinical trials (clinicaltrials.gov) and
NIH grants. We leveraged domain-specific named entity recognition (NER)
models to identify and include rich biomedical entities.

The data is stored in data store (the graph itself), search indexes (the
documents), and database tables (derived data for the visualizations).

We used an embedding model of terms and MeSH entities in order to
create the scatter plot of related terms in the trend visualization. The
trending terms are looking at year-over-year percentage increase in
occurrences in the select set of documents.

The biomarker model is produced using features from a TransE-L2°
embedding and a classification model. In order to make the problem
tractable, the possible pairs are limited to those connected by a fixed set
of paths.
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Figure 1. Schematic Diagram of Knowledge Graph Engine

Data is extracted from structured data, text, and graphs, and stored in a graph-like tabular format.
The data is then merged by mapping references to an entity to a common identifier (usually the
wikidata QID). The properties and relationships are mapped to predicates existing in wikidata. Once
this mapping has been completed, the data is merged into a single graph. The documents (e.g. from
pubmed) are stored in their own search index. The graph itself is loaded into a triple store.
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Figure 5. Tabular results of the query in Figure 4.

Figure 2. Summary of the knowledge graph contents The query returns both the names, and entity URIs in a tabular format.

These counts are expected to increase as we add other datasets or increase what is extracted from
current datasets.
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Figure 3. A sample of the schema of the knowledge graph

This visualization represents the entities and relationships of the graph subset currently accessible through the
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4.A. Query: Clinical trials since 01/2020 about compounds that bind to EGFR

Figure 6. The graph visualization of the results in Figure 4.
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Figure 7. Trend Discovery analysis using MeSH terminology

Visualization of EGFR trend results in the Knowledge Graph across PubMed. “Mutation” term associated with
EGFR and its change year over year for 2015-2020 is illustrated. Similar trends can be explored within Clinical
Trials and NIH Grants information.

Figure 4. Examples of querying the graph

4.A. This is an example of the Visual Query Builder. Using this, someone can easily query data in the graph
through a series of drop-downs. This means that the user does not have to learn a new query language to
access the knowledge graph.

4.B. This is the SPARQL (graph query language) generated by the Visual Query Builder. Users familiar with
SPARQL already, they can write their own queries.
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Figure 8. Gene Variant-to-Drug Link Prediction Task to Predict “Positive therapeutic

8.C.
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Example Path #2:

Path:

/

8.B.

pred1 |pred1iname pred2 |pred2name pred3 |pred3name pred4 |pred4name

P1057 | chromosome AP1057 | chromosome AP2293 | genetic association AP2175 | medical condition treated

P1057 | chromosome AP1057 | chromosome P1911 |increased expression in AP1269 |facet of

P1057 | chromosome AP1057 | chromosome P1911 |increased expression in AP2175 | medical condition treated

P1057 | chromosome AP1057 | chromosome P1916 |gene substitution association with | *P2175 | medical condition treated

P1057 | chromosome AP1057 | chromosome P1918 |altered regulation leads to AP2175 | medical condition treated
(1057 chromosome "P1057 | chromosome P2293 | genetic association AP2175 | medical condition treated _]

P1057 | chromosome AP1057 | chromosome P527 |has part(s) AP527 |has part(s)

P1057 | chromosome P31 instance of "P681 |cell component AP129 |physically interacts with

P1057 | chromosome P703 |[found in taxon AP703 |found in taxon AP129 |physically interacts with

P1057 | chromosome P703 [found in taxon ~P703 |[found in taxon P31 |instance of

P1057 | chromosome P703 [found in taxon AP703 |found in taxon AP3773 | antagonist of

P1057 | chromosome P703 |found in taxon AP703 |found in taxon AP3776 |inhibitor of

P1057 | chromosome P703 [found in taxon AP703 |found in taxon

P1269 | facet of P31 instance of P31 |instance of AP129 |physically interacts with

P3433 | biological variant of [*P527 |has part(s) P1050 |medical condition AP2175 | medical condition treated

P3433 | biological variant of |P1916 [gene substitution association with [*P2175 | medical condition treated

P3433 | biological variant of | P2293 |genetic association AP2175 | medical condition treated

P3433 | biological variant of | P2293 | genetic association AP279 |subclass of AP2175 | medical condition treated

P3433 | biological variant of | P2293 |genetic association P1889 |different from AP2175 | medical condition treated

P3433 | biological variant of | P2293 |genetic association P279 |subclass of AP2175 | medical condition treated

P3433 | biological variant of | P2293 |genetic association P924 |possible treatment AP31 instance of

P3433 | biological variant of |P5572 |expressed in AP689 |afflicts AP2175 | medical condition treated

P3433 | biological variant of [P5572 |expressed in AP927 |anatomical location AP2175 | medical condition treated

P3433 | biological variant of [P688 | encodes AP129 |physically interacts with

P3433 | biological variant of |P688 | encodes AP3773 | antagonist of

P3433 | biological variant of | P688  |encodes P129 |physically interacts with P1889 |different from

P3433 | biological variant of |P703  |found in taxon AP703 |found in taxon AP129 |physically interacts with

P3433 | biological variant of |[P703  |found in taxon AP703 |found in taxon

m Sequence variant -> in chromosome (P1057) -> Chromosome

m  Gene -> in chromosome (P1057) -> Chromosome

m Disease -> genetic association (P2293) -> Gene

m Drug -> medical condition treated (P2175) -> Disease
Positive Pairs: 757

Total Pairs:

650478

Predictor” and “Negative Therapeutic Predictor” relationships in the Knowledge Graph: the
alternative paths found, and used to generate the ranker training set
8.A. A table of all the paths found from sequence variant to drug. Note “*"P###” means inverted

relationship

8.B. A high level description of the process to train the ranker model.

8.C. Example of a single path with the counts of positive gene variant-to-drug pairs, as well as

total pairs identified
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Figure 9. Constraining the data for training a ranker algorithm for predicting positive and
negative therapeutic outcomes

There are 58 million possible sequence variant pairs. This is reduced by only selecting those

pairs related by alternative paths, and then further sampling
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Figure 10. Examples of EGFR variants and Erlotinib drug relationship “P3354”, denoting
positive therapeutic prediction or predicting sensitivity/response to Erlotinib in non-small cell
lung cancer.
Shown are examples or gene variants annotated in CIViC database as predictive of
sensitivity/response to Erlotinib in NSCLC that were reserved in the test set during algorithm training
have been predicted correctly by the ranker, and score very similarly to the examples on which the
training was done.

Conclusions
We demonstrate how combining Al innovations in NLP and graph analytics, as well

as novel approaches in aggregating and harmonizing disparate sources of

biomedical knowledge can act as a novel and promising digital solution with
potential to accelerate biomedical knowledge, answer queries, discover important
trends or assist in generating new ideas, and how knowledge graphs can be used
for various medical purposes such as clinical decision support and drug discovery.
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