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Figure 7. Trend Discovery analysis using MeSH terminology
Visualization of EGFR trend results in the Knowledge Graph across PubMed. “Mutation” term associated with 
EGFR and its change year over year for 2015-2020 is illustrated. Similar trends can be explored within Clinical 
Trials and NIH Grants information.

Knowledge graphs provide us the advantage to encode and leverage 
relationships in addition to concepts in the context of heterogeneous data. 
We leveraged graph and NLP AI techniques to build a domain-specific 
knowledge graph. We extracted the biomedically-relevant subset of 
wikidata, and augmented it by adding more entities and relationships from 
the biomedical literature (PubMed), clinical trials (clinicaltrials.gov) and 
NIH grants. We leveraged domain-specific named entity recognition (NER) 
models to identify and include rich biomedical entities. 

The data is stored in data store (the graph itself), search indexes (the 
documents), and database tables (derived data for the visualizations).

We used an embedding model of terms and MeSH entities in order to 
create the scatter plot of related terms in the trend visualization. The 
trending terms are looking at year-over-year percentage increase in 
occurrences in the select set of documents.

The biomarker model is produced using features from a TransE-L25 
embedding and a classification model. In order to make the problem 
tractable, the possible pairs are limited to those connected by a fixed set 
of paths. 

In healthcare product development and research, teams invest huge 
amounts of time to study through publications and other relevant 
resources. There is a need for a novel solution to efficiently and reliably 
extract information from multiple clinical resources, in addition to 
generating new insights which can only be achieved through structuring 
textual information and accessible intelligent synthesis across multiple 
relevant resources. We created a cloud-based solution where data from 
heterogeneous sources is structured, integrated and harmonized, and 
users can easily leverage the combined database to answer 
domain-specific questions and generate insights efficiently in a targeted 
way. 

Figure 5. Tabular results of the query in Figure 4.
The query returns both the names, and entity URIs in a tabular format.

Figure 1. Schematic Diagram of Knowledge Graph Engine
Data is extracted from structured data, text, and graphs, and stored in a graph-like tabular format. 
The data is then merged by mapping references to an entity to a common identifier (usually the 
wikidata QID). The properties and relationships are mapped to predicates existing in wikidata. Once 
this mapping has been completed, the data is merged into a single graph. The documents (e.g. from 
pubmed) are stored in their own search index. The graph itself is loaded into a triple store.

Figure 6. The graph visualization of the results in Figure 4.
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Figure 3. A sample of the schema of the knowledge graph 
This visualization represents the entities and relationships of the graph subset currently accessible through the 
Visual Query Builder tool.

Figure 4. Examples of querying the graph
4.A. This is an example of the Visual Query Builder. Using this, someone can easily query data in the graph 
through a series of drop-downs. This means that the user does not have to learn a new query language to 
access the knowledge graph.
4.B. This is the SPARQL (graph query language) generated by the Visual Query Builder. Users familiar with 
SPARQL already, they can write their own queries.

Figure 2. Summary of the knowledge graph contents
These counts are expected to increase as we add other datasets or increase what is extracted from 
current datasets.

We demonstrate how combining AI innovations in NLP and graph analytics, as well 
as novel approaches in aggregating and harmonizing disparate sources of 
biomedical knowledge can act as a novel and promising digital solution with 
potential to accelerate biomedical knowledge, answer queries, discover important 
trends or assist in generating new ideas, and how knowledge graphs can be used 
for various medical purposes such as clinical decision support and drug discovery. 
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Figure 8. Gene Variant-to-Drug Link Prediction Task to Predict “Positive therapeutic 
Predictor” and “Negative Therapeutic Predictor” relationships in the Knowledge Graph: the 
alternative paths found, and used to generate the ranker training set 
8.A. A table of all the paths found from sequence variant to drug. Note “^P###” means inverted 
relationship
8.B. A high level description of the process to train the ranker model. 
8.C. Example of a single path with the counts of positive gene variant-to-drug pairs, as well as 
total pairs identified

Figure 9. Constraining the data for training a ranker algorithm for predicting positive and 
negative therapeutic outcomes
There are 58 million possible sequence variant pairs. This is reduced by only selecting those 
pairs related by alternative paths, and then further sampling
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Figure 10.  Examples of EGFR variants and Erlotinib drug relationship “P3354”, denoting 
positive therapeutic prediction or predicting sensitivity/response to Erlotinib in non-small cell 
lung cancer. 
Shown are examples or gene variants annotated in CIViC database as predictive of 
sensitivity/response to Erlotinib in NSCLC that were reserved in the test set during algorithm training 
have been predicted correctly by the ranker, and score very similarly to the examples on which the 
training was done. 
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