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Abstract: The clinical application of detecting COVID-19 factors is a challenging task. The existing
named entity recognition models are usually trained on a limited set of named entities. Besides clinical,
the non-clinical factors, such as social determinant of health (SDoH), are also important to study the
infectious disease. In this paper, we propose a generalizable machine learning approach that improves
on previous efforts by recognizing a large number of clinical risk factors and SDoH. The novelty of
the proposed method lies in the subtle combination of a number of deep neural networks, including
the BiLSTM-CNN-CRF method and a transformer-based embedding layer. Experimental results on
a cohort of COVID-19 data prepared from PubMed articles show the superiority of the proposed
approach. When compared to other methods, the proposed approach achieves a performance gain of
about 1–5% in terms of macro- and micro-average F1 scores. Clinical practitioners and researchers
can use this approach to obtain accurate information regarding clinical risks and SDoH factors, and
use this pipeline as a tool to end the pandemic or to prepare for future pandemics.

Keywords: COVID-19; named entities; clinical; non-clinical; social determinants of health; pipeline;
de-identification

1. Background

The COVID-19 pandemic (coronavirus disease 2019) has had a significant impact on
society, due to the severity of the disease and the slow implementation of public health
measures [1]. Many of these challenges stem from the information overload problem, which
is exacerbated by the growing understanding of the disease and a plethora of literature
on the subject [2]. COVID-19 Open Research Dataset (CORD19) [3] and LitCOVID [4]
are among the pioneering data sources made available by the research community to aid
collaboration between the computing community and the many stakeholders in the COVID-
19 pandemic. These data sources contain hundreds of thousands of articles, and new articles
are added regularly [1,5]. In its current state, it is difficult for researchers, clinical experts,
and practitioners to obtain up-to-date information on the most recent findings.

To study the risk factors associated with COVID-19, government organizations and
health sectors can always arrange for human resources to convert the pools of information
from the literature into a structured format. However, by the time this data is made
accessible to the research community, much of the earlier information is outdated. Natural
Language Processing (NLP), a branch of artificial intelligence (AI), allows automated
processing and analysis of unstructured texts, such as extracting key information and
representing it in a structured format appropriate for computational analysis [6].

The goal of this research is to study the clinical factors, such as disease, drugs, treat-
ments, procedures, and non-clinical factors, such as social determinants of health (SDoH)
from the biomedical texts. In terms of methodology, we employ the named entity recogni-
tion (NER) [7] task of NLP to extract the biomedical factors from the free texts.
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Despite being highly useful, the state-of-the-art work [8–11] in biomedical NER is
primarily focused on a small number of entities (disease, chemicals, genes, etc.). There
are numerous other clinical factors to consider, such as diagnosis, therapies, medical
concepts, risks, and vital signs, as well as non-clinical factors such as SDoH. Extracting
these biomedical entities (clinical and non-clinical) is important to study the predictors of
COVID-19, which is a motivation for this research. Usually, scientific texts, such as clinical
reports, medical notes, and Electronic Health Records (EHR) consist of sensitive patient
information that must be de-identified. In this work, we also preserve patients’ private
information through the data obfuscation process.

We have extended our previous work [12] in this paper and performed a more detailed
analysis. We also fine-tune a transformer module to create the task-specific embeddings in
this work. Our contributions are listed below:

• We develop a biomedical NER pipeline to identify clinical as well as non-clinical
named entities from the COVID-19 texts. We attempt to consolidate and explain data
science best practices through this pipeline, with numerous convenient features that
can be used as it is or as a starting point for further customization and improvement.

• We develop a new dataset by curating a large number of scientific publications and
case reports on COVID-19, and we scientifically parse the text from these scientific
articles and prepare a dataset from it. We annotate a part of this dataset on biomedical-
named entities to prepare a gold-standard dataset to train the NER pipeline. A portion
of the gold-standard dataset is also reserved as a test set.

• We de-identify the patients’ personal information after identifying the named entities,
thus adhering to the Health Insurance Portability and Accountability Act (HIPAA) [13].

• We demonstrate the efficacy and utility of this pipeline by comparing it with the
state-of-the-art methods on public benchmark datasets. We also show the key findings
related to COVID-19 in the analysis.

2. Previous Work

Named Entity Recognition (NER) is the task of identifying a named entity (a real-
world object or concept) in unstructured text and then classifying the entity into a standard
category [7]. In the field of biomedicine, NER is the task of identifying entities such as
genes, diseases, chemicals, and proteins [11]. Several datasets are proposed for the NER
task. These datasets are prepared usually in the CONLL-2003 format [14], a prototypical
format for NER datasets. Many machine learning and deep learning based NER models
have also been released in the past few years. Below, we summarize the benchmark datasets
and methods used for NER in Table 1:

Table 1. Biomedical NER datasets and methods.

Benchmark Datasets

Corpus Entity Types Data Size

NCBI-Disease [15] Diseases 793 PubMed abstracts

BC5CDR [16] Diseases 1500 PubMed articles

BC5CDR [16] Chemicals 1500 PubMed articles

BC4CHEMD [17] Chemicals 10,000 PubMed abstracts

BC2GM [18] Gene/Proteins 20,000 sentences

JNLPBA [19] Genes, proteins 2404 abstracts
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Table 1. Cont.

Benchmark Datasets

Corpus Entity Types Data Size

i2b2-Clinical [20] Problem, Treatment, and Test. 426 discharge summaries

I2b2 2012 [21]

Clinical (problems, tests,
treatments, clinical departments,
occurrences (admission,
discharge) and evidence).

310 discharge summaries

Benchmark methods

Method Description

BiLSTM-CRF [22] Bidirectional Long short-term memory (LSTM) and Conditional
random field (CRF) architecture for NER.

BiLSTM-CNN-Char [23]
A hybrid LSTM and Convolutional Neural Network (CNN)
architecture that learns both character-level and word-level features
for the NER task.

BiLSTM-CRF-MTL [24] A multi-task learning (MTL) framework with a BiLSTM-CRF model
to collectively use the training data of different types of entities.

Att-BiLSTM-CRF [25], Attention (Att) based BiLSTM model with a CRF layer for chemical
NER task.

Doc-Att-BiLSTM-CRF [26] Document (Doc)-level Attention (Att)-based BiLSTM-CRF network
for disease NER task.

MCNN [27] A multiple (M) label CNN-based network for disease NER from
biomedical literature.

CollaboNet [28] A collaboration of deep neural networks, i.e., BiLSTM-CRF with a
single task model trained for each specific entity type.

SciBERT [29]

A pre-trained language model based on Bidirectional Encoder
Representations from Transformers (BERT) pretrained on a large
multi-domain corpus of scientific publications to improve
performance on downstream scientific tasks including NER.

BioBERT [30] A pre-trained biomedical language representation model based on
BERT for biomedical text mining

According to the Healthy People 2030 initiative, SDoHs related to population health [31]
have a major impact on people’s health, well-being, and quality of life, and are related to health
outcomes; this is a rather underexplored area of research in biomedicine and clinical research.
In this work, we mention some SDOH in our dataset.

In a 2016 survey, nearly 95% of eligible hospitals in the United States use EHRs [32],
with that figure expected to rise in these years. The standard EHRs contain 18 cate-
gories of critical private information about patients (e.g., name, age, and address), which
must be de-identified before they are made public, as required by HIPPA [33]. For the
de-identification purpose, researchers used a variety of methods, including rule-based,
machine learning-based, and hybrid [34]. The CRF models [35], and Structured Support
Vector (SVM) [36] are some of the commonly used models for NER and de-identification
tasks. Deep learning models based on recurrent neural networks (RNN) and CNN models
are also used for the de-identification of clinical notes [37]. The BioBERT [9], SciBERT [29],
and recent Transformer-based models are also used to identify the named entities from
biomedical texts.

In this work, we also use deep learning-based methods to build a pipeline for the
biomedical NER and de-identification tasks. We identify many biomedical named entities
including SDOH from COVID-19 texts.
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3. Materials and Methods
3.1. Data Cohort

We have collected the scientific articles and clinical case reports from different journals
(Lancet, BMJ, AMJ, Clinical Medicine and related) through LitCOVID [4] API, a resource of
scholarly articles. The inclusion and exclusion criteria for data collection are given below:

• We specify the timeline between November 2021 and March 2022 for data collection.
• We specify English as the language to get the publications.
• We exclude many early-pandemic scientific articles, the intuition being that the disease

symptoms and diagnosis, drugs and vaccination information were not clear during
that time.

• We specify the population groups in adults: 19–44 years, middle-aged: 45–64 years,
aged: 65+ years, during data collection.

After obtaining the scientific articles from these sources, we use the Spark OCR [38]
library to automatically extract content from the PDF files and convert them into dataframes,
where each row corresponds to one document (publication). After all these steps and
filtration criteria, we acquired around 15 k scientific articles. Because we specify limited
age groups in the population setting, English as the only language, and a time period of
5 months, the number of articles obtained here is lower than those obtained in the actual
repository (LitCOVID) during that time period.

Gold-standard dataset: We annotated around 200 scientific articles from our collected
dataset using the JohnSnowLabs annotation lab [39], and prepare a gold-standard dataset.
A gold-standard dataset [40] means a corpus of text or a set of documents, annotated
or tagged with the desired labels by expert annotators. We use the application of active
learning [41] to re-annotate a larger portion of the data, where we specified the gold-
standard data as the seed. By the end of this step, we acquired around 500 articles that were
annotated. According to research [42], this amount of data is sufficient to begin training an
NLP model. We used the following named entities, shown in Table 2, as the gold labels.
We saved this data in CONLL [14] format.

Table 2. Biomedical entities used in this study.

Entity Type Entities

Clinical name entities

Admission (patient admission status), oncology (tumor/cancer),
blood pressure, respiration (e.g., shortness of breath), dosage
(amount of medicine/drug taken), vital signs, symptoms, kidney
disease, temperature (body), diabetes, vaccine, time (days, weeks or
so), obesity (status), BMI, height (of patient), heart disease, pulse,
hypertension, drug name, cerebrovascular disease, disease,
treatment, clinical department, weight (of patient),
admission/discharge (from hospital), modifier (modifies the
current state), external body part, test, strength, route, test result.

Non-clinical entities

Name (of patient), location, date, relative date, duration,
relationship status, social status, family history (family members,
alone, with family, homeless), employment status, race/ethnicity,
gender, social history, sexual orientation, diet (food type, nutrients,
minerals), alcohol, smoking.

3.2. Biomedical Named Entity Recognition Pipeline Structure

In this study, we propose a trainable ML pipeline that includes a pre-processor, tok-
enizer, embedding component, a deep neural network based on BiLSTM, CNN and CRF
models, and a de-identifier. The novelty of this approach lies in the subtle integration of
different components that are stacked together to train the pipeline. We build this pipeline
following the Spark ML pipeline [43], which provides a default scalable solution with-
out requiring much computation power [44]. The workflow of this pipeline is shown in
Figure 1.
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Figure 1. Biomedical Pipeline.

Next, we explain each component of this pipeline.
Data Collection: The input to the pipeline can be any raw textual data. We provided

the data from our data cohort for this purpose.
Pre-processor: The preprocessor takes the text data as an input that comes from the

data collection phase, pre-processes it, and detects the sentence boundaries in each record
(document). Then, it transforms the data into a format that is readable by the next stage in
the pipeline. The output from the pre-processor is the set of records that are pre-processed.

Tokenizer: The tokenizer takes the pre-processed data from the pre-processor as
input. Tokenization is the process of breaking the input text into smaller chunks (words,
or sentences) called tokens [45]. These tokens aid in comprehending the context and in
developing the NLP model. The output from the tokenizer is transformed data, containing
the tokens (words) corresponding to each document (scientific article, case report and
so on).

Embedding: The tokenized data from the tokenizer goes into the embedding com-
ponent, which maps tokens to vectors. We have fine-tuned the pre-trained BlueBERT
model [46] that is trained on PubMed abstracts and MIMIC-III [47] on our gold-data to
provide task-specific embeddings.

Named Entity Recognizer: This component identifies biomedical entities in the text.
This is an algorithm based on the BiLSTM-CNN-CRF [48] model. We modify the vanilla
BiLSTM-CNN-CRF for the task-specific embeddings and make our modifications. We
introduce our NER model in Figure 2 and explain its working below.
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As shown in Figure 2, the algorithm takes as input the sequence of words or a sentence.
This sequence is represented as s = [w1, w2, . . . , wN ], where N is the sentence length and
wi ∈ RV is the ith token in the sequence. This input goes to the embedding layer.

The embedding layer is the first layer in the model that converts a sentence from a
sequence of tokens into a sequence of dense vectors. In this work, we use our fine-tuned
transformer model for the embeddings. The output of this layer is a sequence of vectors
x = [x1, x2, . . . , xN ], where xi = Ewi ∈ RD, E is for embedding and xi is the dense vector
representation of word wi.

The second layer in this model is a CNN layer that is used to capture local information
within given words in a biomedical context. The CNN is just for char embeddings to
represent letters. The main feature is word embeddings coming from the embedding layer
(BERT-based embeddings). The output of the CNN layer is c = [c1, c2, . . . , cN ], where
ci ∈ RM, M is the number of filters. The contextual representation ci of the ith character is
the concatenation of the outputs of all filters at this position

The third layer in the model is the Bi-LSTM network, which is used to learn hidden
representations of characters or tokens in a sequence using all of the previous contexts (in
both directions). The output of the Bi-LSTM layer is h = [h1, h2, . . . , hN ], where hi = R2S

and S is the dimension of hidden states in LSTM.
The fourth layer on the top of the Bi-LSTM network is the CRF layer [49]. The input to

the CRF layer is the hidden representations of characters h = [h1, h2, . . . , hN ] generated
by the Bi-LSTM layer. To ensure that the predicted labels are valid, the CRF layer captures
the dependency relationship between the named tags and constrains them to the final
predicted labels [22]. The output of the CRF layer is y = [y1, y2, . . . , yN ], which is a label
sequence of sentence s, where yi ∈ RL is the one-hot representation of the ith character’s
label and L is the number of labels. In this work, the biomedical entities are the labels. A
tanh layer on top of the BiLSTM layer is added to predict the confidence scores (CS) for the
word with each of the possible labels as the output score of the network.

De-identifier: We use the data obfuscation technique, which is a process that obscures
(masks) the meaning of data [50]. For example, to replace identified names with different
fake names or to mask some data, value <02-02-2022> with <DATE> is used. This com-
ponent provides HIPAA [13] compliance when dealing with text documents containing
any protected health information. We use the pre-trained de-identification model from
Johnsnowlabs [51] and embed it inside the pipeline to de-identify the personal records of
the patients.

Biomedical Named Entities: The output of the pipeline is the biomedical entities,
shown in Table 2.

3.3. Evaluation

We adopted a two-fold evaluation technique: (1) to evaluated the accuracy of the
proposed approach, and (2) to analyze the results of our approach for pandemic surveil-
lance. To evaluate the accuracy of the proposed approach, we considered a number of
baseline methods and benchmark datasets including our test set. To evaluate the pandemic
surveillance, we analyzed the results of our model and summarized the key findings.

Benchmark datasets: We used the JNLPBA [19] for chemical entities, NCBI-Disease [15]
for disease entities, BC5CDR [16] dataset for chemical and disease mentions, BC2GM [18]
for genes, and i2b2-Clinical [20] for clinical entities. From here, we obtained datasets that
were already available in CoNLL-2003 format [52]. We performed further processing to
convert them into IOB (Inside-Outside-Before) [53] scheme. All the datasets were divided
into training, validation, and test sets, with a 70:15:15 ratio for all experiments. The Stratified
5-Folds cross-validation (CV) strategy was used for train/test split if original datasets did
not have an official train/test split. We also set aside 30% of our gold dataset as a test set.

Baseline Methods: We compared the performance of our approach against the fol-
lowing state-of-the-art baseline methods: BiLSTM-CRF [54], BiLSTM-CRF-MTL [24], CT-
BERT [55], SciBERT [29], and BioBERT [9] (v1.0, v1.1, v1.2). All of the baselines were trained
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on the aforementioned datasets. Each baseline was tuned to its optimal hyperparameter
setting and the best results were reported for each method.

Training environment: All the experiments were run on Google Colab Pro (NVIDIA
P100 or T4, 24 GB RAM, 2 x vCPU). The grid search was used to get optimal values for the
hyperparameters and early stopping was performed to overcome overfitting. We specified
the following hyperparameters as shown in Table 3.

Table 3. Hyperparameters used—optimal parameter (range of values).

Hyperparameter Optimal Value (Values Used)

Learning rate 1 × 10−3 (1 × 10−2, 1 × 10−3, 1 × 10−5, 2 × 10−5, 5 × 10−5, 3 × 10−4)

Batch size 64 (8, 16, 32, 64, 128)

Epochs 30 ({2, 3, . . . , 30})

LSTM state size 200 (200, 250)

Dropout rate 0.5 ({0.3, 0.35, . . . , 0.7})

Optimizer Adam

CNN filters 2 (2, 3, 4, 5)

Hidden Size 768

Embedding Size 128

Max Seq Length 512

Warmup Steps 3000

Evaluation metrics: Following the standard practice [41,56] to evaluate NER tasks, we
used the following metrics:

- Micro-average F1 to measures the F1-score of aggregated contributions of all classes.
- Macro-average F1that adds all the measures (Precision, Recall, or F-Measure) and

divides with the number of labels, which is more like an average.

4. Results

The results and analysis are given below.

4.1. Comparison with Baseline Methods

We show the performance of our approach for accuracy in Table 4.

Table 4. Test results using macro-average F1 (macro) and micro-average F1 (micro) scores on all
datasets using different methods. The best scores are in bold and the second-best in italic.

Methods/ Dataset Metric NCBI BC5CDR BC2GM JNLPBA i2b2-Clinical Our Dataset

BiLSTM-CRF
micro 85.80 84.22 78.46 74.29 83.66 87.10
macro 86.12 85.09 80.01 75.10 84.01 88.01

BiLSTM-CRF-MTL
micro 86.46 84.94 80.34 77.03 82.38 88.39
macro 88.01 85.00 81.12 77.14 83.96 88.97

CT-BERT
micro 77.50 76.85 74.10 68.00 77.07 78.10
macro 78.50 77.96 75.37 68.98 78.01 78.98

SciBERT
micro 82.88 82.94 84.08 75.77 78.19 80.95
macro 83.32 83.13 85.84 77.01 79.10 81.14

BioBERT-Base v1.0
micro 84.01 86.56 78.68 86.28 85.87 84.01
macro 79.10 78.90 79.00 78.13 72.18 79.10

BioBERT-Base v1.1
micro 88.52 87.15 79.39 76.16 86.27 88.52
macro 85.89 87.10 87.18 75.45 87.78 85.89

BioBERT-Base v1.2
micro 89.12 87.81 83.34 76.45 86.88 89.12
macro 86.78 87.89 86.07 75.15 86.98 86.78

Our approach
micro 90.58 89.90 89.15 79.92 89.10 94.78

macro 91.83 90.34 90.38 80.94 90.48 95.37
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Overall, these results show that our approach achieved state-of-the-art performance
on five public biomedical benchmarks, as well as on our dataset designed specifically for
biomedical named entities. This demonstrates the generalizability of our methodology
across different domains.

Our approach achieved the best micro F1 score of 94.78 on our dataset (52 entities),
90.58 on NCBI Disease (disease entity), 89.90 on BC5CDR (chemicals), 89.15 on BC2GM
(gene/proteins), 79.92 on JNLBPA (chemical) and 89.10 on the i2b2 (clinical) dataset. We
see similar patterns and higher performances in our pipeline for macro F1 scores.

The BioBERT model shows competitive performance in these results. Among the
variants of the BioBERT, we see overall better performance of BioBERT v1.2 than its other
variants, except for a few places, where BioBERT v1.1 marginally outperforms BioBERT
v1.2. The better performance of BioBERT v1.2 is attributed to its training method, which
is the same method as BioBERT v1.1 but includes an LM head [57]. Among the BERT-
based models (BioBERT, SciBERT, CT-BERT), BioBERT performs best. The BioBERT is quite
generalizable compared to other BERT-based methods, the SciBERT is initially trained on
scientific data (not clinical) [29], and, CT-BERT is pre-trained on social media data, so they
perform differently with different entity types.

Among the BiLSTM-based models (BiLSTM-CRF, BiLSTM-CRF-MTL), we observe the
good performance of the BiLSTM-CRF model in identifying many diseases, chemicals, and
gene/protein entities in these experiments. Our algorithm (BiLSTM-CNN-CRF) performs
better than the BiLSTM-CRF baseline, probably because we are using biomedical embed-
dings on top of char-level embeddings. The fine-tuned transformer model’s embeddings
enhance the performance of our model.

Although we fine-tuned each baseline method to its optimal hyperparameter settings,
we anticipate that the relatively low scores of these baselines on our dataset can be attributed
to the following: (i) the absence of an annotated dataset for training new biomedical entities,
and (ii) different training/test set splits used in previous works that were unavailable.

Ablation Study: We performed an ablation experiment in which we evaluated the
component of our pipeline. This component was based on our modified BiLSTM-CNN-CRF
model. We replaced the standard BiLSTM-CNN-CRF in the sequence labeling architecture
(Figure 2) with a direct feedforward map with and without a CRF decoder. We used a
simple linear map over the embeddings to determine their direct information content. The
results of this ablation study on our test set, based on macro average F1-score, are shown in
Table 5.

Table 5. Ablation study of the model. Bold shows best macro-average F1 score.

Model Macro

BiLSTM-CNN-CRF 94.18 ± 0.12
BiLSTM-CNN 87.37 ± 0.02

Map-CNN-CRF 80.55 ± 0.03
Map-CNN 69.25 ± 0.04

The results, in Table 5, show that the effect of removing the BiLSTM layer is far more
than removing the CRF layer from BiLSTM-CNN-CRF. This is shown with a dropped macro
F1 of more than 15% when we remove the BiLSTM layer, compared to removing only the
CRF layer. The most impacted performance is seen with Map-CNN where we removed
these two layers (BiLSTM and CRF). With all these results, we find that our default settings
are best in this setup.

4.2. Pandemic Surveillance

In this section, we demonstrate the effectiveness of our approach in demonstrating
the key findings on pandemic surveillance. First, we show the most common entity types
predicted by our approach after parsing 500 case reports, and show the performance of
the model in terms of precision, recall, F1-score (F1), micro-average and macro-average in
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Table 6. The formulae for these performance metrics are based on true positives (TP), false
positives (FP) and false negatives (FN).

Table 6. Performance of most used entity from random 500 case reports.

Entity TP FP FN Prec Recall F1

Disease 818 98 112 0.89 0.88 0.89

Gender 390 78 101 0.83 0.79 0.81

Employment 234 29 132 0.89 0.64 0.74

Race_Ethnicity 334 65 96 0.84 0.78 0.81

Smoking 309 24 97 0.93 0.76 0.84

Psychological_Condition 218 29 58 0.88 0.79 0.83

Death_Entity 387 34 103 0.92 0.79 0.85

BMI 146 12 29 0.92 0.83 0.88

Diabetes 157 10 28 0.94 0.85 0.89
Macro-average 2993 379 756 0.89 0.79 0.84
Micro-average 2993 379 756 0.89 0.80 0.84

As seen in Table 6, we can accurately predict a large number of entities with quite a
high score. We also show the prevalence of the most common symptoms observed in our
data in Figure 3.
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the number of times the symptoms were mentioned in test set.

The results in Figure 3 show that fever, nasal congestion, pains, a running nose, and
sore throat are among the most common COVID-19 symptoms. Next, we show the most
occurring named entities (occurrence > 70%) under the prominent entity types (drugs,
vaccines, treatments) and show the results in Table 7.
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Table 7. Most prevalent named entities under entity types (drugs, vaccine, treatments).

Drugs Vaccine Non-Medical Treatments

Hydroxychloroquine Pfizer-BioNTech Isolation
Paxlovid Moderna Wear masks
Actemra AstraZeneca Vaccination

Immunomodulators CoronaVac Oxygen support
Steroid BBIBP-CorV Medication

Amoxicillin Janssen Hand sanitization

We also gave a snippet from a COVID-19 related case report to our pipeline and show
the confidence score for the predicted entities. The results are shown in Table 8.

Table 8. Test Results on all Datasets using different Methods.

Sentence Begin End Chunks Biomedical Entity Confidence

0 2 12 73-year-old Age 1.00
0 14 18 woman Gender 1.00
0 32 43 Fever Clinic Clinical Department 0.98
0 52 65 First Hospital Clinical Department 0.51
0 109 134 Fever, temperature Symptom 0.80
0 156 160 Cough Symptom 0.99
0 163 175 Expectoration Symptom 1.00
0 178 196 Shortness of breath Symptom 0.39
0 203 218 General weakness Symptom 0.77
0 233 244 Prior 5 days Relative Date 0.42
1 247 249 She Gender 1.00
1 261 264 Mild Modifier 0.90
1 266 273 Diarrhea Symptom 1.00
1 280 289 Stools/day Symptom 0.85
1 292 303 2 days prior Relative Date 0.68
1 322 329 Hospital Clinical Department 1.00
1 386 402 COVID-19 positive Disease Syndrome 0.90
1 436 454 Healthcare provider Employment 0.94
2 486 494 Cirrhosis Disease Syndrome 0.96
2 500 514 Type 2 diabetes Diabetes 0.95
2 535 541 Smoking Smoking 1.00
2 546 553 Drinking Alcohol 0.93

The result in Table 8 shows that our model can predict many named entities with a
high level of confidence score.

We take the nominal race groups [58] and report the results where the race group
accounts for more than 5% of the population. This finding shown in Figure 4 is based
on a subset of available data from a specific time period, so it may not be an accurate
representation of racial groups as a whole during the COVID-19 outbreak.
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We show a sample prediction of our model on a case report [59] in Figure 5, where we
can see that many clinical and SDOH are being detected.
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5. Discussion
5.1. Implications in Healthcare

There are many different ways that this pipeline can be used in healthcare settings.
These biomedical entity types can assist physicians, nurses, and other healthcare profes-
sionals in matching symptoms to a diagnosis, a course of treatment, and follow-up. Health
disparities can be decreased by tracking social determinants [60]. The clinical data can
be converted into knowledge, evidence, and clinical impact using this research as well.
This pipeline emphasizes best practices, openness, reproducibility, automation, and the
capacity to recognize complex named entities from biomedical texts. With little to no code
modification, this pipeline can also be applied to any other domain.

5.2. Transfer Learning

The advantages of transfer learning in detecting COVID-19-named entities become
clearer because of this work. The proposed approach (combining BiLSTM-CRF-CNN with
Transformer-based embeddings) achieves a performance comparable to pure Transformer-
based models (BioBERT), and performs at least 1 to 5% better compared to conventional
BiLSTM models. In the future, it would be beneficial to have our own pre-trained embed-
dings that can be used to study a large number of clinical and non-clinical entities.

5.3. Limitations

Although the BiLSTM-CNN-CRF model that we used for this approach showed good
results and outperformed the current state-of-the-art solutions, there is still room for
improvement, and the following points are what we would consider implementing in the
future: first, we plan to increase the number of layers in this deep neural network. We
intend to pre-train a transformer-based model. In this regard, one approach would be to
first prepare more data for annotation and then pre-train the model on the annotated data.

So far, we have annotated a portion of the dataset, which suffices for the purpose of
model training. In the future, we strongly encourage the inclusion of medical professionals
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in the annotation guideline. We also plan to annotate a large number of documents for this
type of study.

We also plan to test the model on additional benchmark datasets. Furthermore, we
intend to curate more clinical data; in particular, getting real-time access to EHRs would
be helpful. Since we are already providing a de-identifier to de-identify patients’ personal
information through this pipeline, we hope to gain access to such a dataset soon while
adhering to HIPAA guidelines. Lastly, due to the black-box nature of most deep neural
networks, we also plan to handle bias or systematic error in research methods, which may
influence disease associations and predictions.

6. Conclusions

In conclusion, this paper presents a pipeline that consists of a number of ML compo-
nents stacked together. We used an approach to train models for the biomedical named
entities using the BiLSTM-CNN-CRF model plus BERT-based embeddings. This paper
shows that using contextualized word embedding, pre-trained on biomedical corpora,
significantly improves the results of biomedical NER tasks. We evaluated the performance
of this approach on benchmark datasets and our own test set, and our approach achieved
the state-of-the-art results compared to the baselines. This pipeline can be used in different
health science settings, provided that the annotated data to train the model and the pipeline
is available.
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