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Abstract
Recent research advances achieve human-level
accuracy for de-identifying free-text clinical
notes on research datasets, but gaps remain
in reproducing this in large real-world settings.
This paper summarizes lessons learned from
building a system used to de-identify over one
billion real clinical notes, in a fully automated
way, that was independently certified by multi-
ple organizations for production use.

A fully automated solution requires a very
high level of accuracy that does not require
manual review. A hybrid context-based model
architecture is described, which outperforms a
Named Entity Recogniton (NER)-only model
by 10% on the i2b2-2014 benchmark. The
proposed system makes 50%, 475%, and 575%
fewer errors than the comparable AWS, Azure,
and GCP services respectively while also out-
performing ChatGPT by 33%. It exceeds 98%
coverage of sensitive data across 7 European
languages, without a need for fine tuning.

A second set of described models enable data
obfuscation – replacing sensitive data with ran-
dom surrogates – while retaining name, date,
gender, clinical, and format consistency. Both
the practical need and the solution architecture
that provides for reliable & linked anonymized
documents are described.

Keywords: de-identification, natural language
processing, anonymization, NLP, deep learning,
transfer learning, data obfuscation

1. Introduction

Electronic Health Records (EHRs) are now in use
by more than 96% of acute care hospitals and
86% of office-based physicians in the USA Myrick
et al. (2019). While most billing & claims data is
in structured format, a lot of clinical data - e.g.
progress notes, discharge summaries, radiology re-

ports, pathology reports - are in the form of un-
structured text. Making this data available to re-
search bodies is vital for a variety of secondary uses
like population health, real-world evidence, patient
safety, and drug discovery.

Since this data can contain highly sensitive infor-
mation, it must first go through a de-identification
process. De-identified patient data is defined as
health information that has been stripped of all “di-
rect identifiers” — that is, any information that
can be used to uniquely identify the patient. The
Health Insurance Portability and Accountability Act
(HIPAA)’s Safe Harbour guidelines define 18 such di-
rect identifiers US-DHHS (2003) Stubbs et al. (2017)
- although any other data point that can uniquely
identify a patient must be considered as well.

After defining how a specific dataset should be de-
identified, the task of identifying protected health in-
formation (PHI) in structured or unstructured data
can be automated. A recent meta-review by Yoga-
rajan et al. (2020) found 18 papers of systems that
achieve an F-measure above 95% on the 2014 i2b2
de-identification challenge Stubbs et al. (2015). This
threshold is widely regarded as matching the accu-
racy of manual de-identification Stubbs et al. (2015).
Neamatullah et al. (2008) reported that a single hu-
man annotator achieved a recall of 81% while requir-
ing a consensus of two human annotators raised it to
94%.

However, the same meta-review also highlighted
gaps in the proposed systems - concluding that a
high F1-measure is a necessary but insufficient condi-
tion for enabling automated de-identification on real-
world clinical text. Two areas of concern were com-
mon consistent mistakes that systems make, and chal-
lenges in obfuscating PHI in a medically consistent
manner.
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This paper presents lessons learned from a sys-
tem that has addressed this and other practical chal-
lenges on real-world clinical documents. This system
has been used over the past five years in production
settings, has been used to automatically de-identify
over one billion real-world clinical notes Taiyab and
Mico (2022), and has been certified through an in-
dependent expert determination process by multiple
organizations and in multiple countries Piotrowski
(2022). Handling this scale of data volume and va-
riety required automated solutions to longstanding
pragmatic challenges. Specifically, the contributions
of this paper are:

• Introduce a natively scalable, pre-trained NLP
pipeline that delivers state-of-the-art accuracy
on academic benchmarks and outperforms the
accuracy of the commercial services of the 3 ma-
jor public cloud providers as well as ChatGPT
OpenAI (2023).

• Specify how to achieve the same level of accu-
racy in multiple languages with minimal effort,
beyond the 7 languages the system currently sup-
ports.

• Propose a method for data obfuscation - the task
of replacing PHI with medically appropriate ran-
dom surrogates - filling six data consistency re-
quirements.

2. Background and Related Work

De-identification of unstructured data is a well-
studied problem, and various Natural Language Pro-
cessing (NLP) Nadkarni et al. (2011) approaches have
been proposed till date Khin et al. (2018). It can be
split into two subtasks: First, PHI needs to be iden-
tified in text, and second, those identifiers are then
replaced using masking (with a placeholder value) or
obfuscation (with a random value based on its type).
The first subtask has received more attention in re-
search.
Early de-identification systems in the clinical do-

main were mainly rule-based, such as Sweeney (1996)
and Gupta et al. (2004). These systems employed
regular expressions, syntactic rules, and specialized
dictionaries to identify PHI in text. Rule-based sys-
tems usually perform well on recognizing formulaic
PHI instances - i.e. phone numbers, emails, licenses,
etc. - but struggle with concepts like the names of
people, professions, and hospitals Liu et al. (2017).

Rule-based systems also require major changes in dic-
tionaries and rules when implemented in new environ-
ments, generalising poorly over unseen datasets.

The concept of automatic de-identification was first
introduced into the Informatics for Integrating Bi-
ology and the Bedside (i2b2) project Uzuner et al.
(2007) in 2014, an academic NLP challenge on au-
tomatically detecting PHI identifiers from medical
records. These challenges have boosted research and
development of Machine & Deep Learning algorithms
for robust PHI identification. Conditional Random
Fields (CRF) He et al. (2015) and hand-crafted fea-
tures using lexical rules Lafferty et al. (2001) to iden-
tify required concepts from data were among the most
popular early approaches.

As vector based language models became more
efficient in encapsulating semantic information, the
trend shifted to deep learning (DL) models leverag-
ing semantic information from language models. Liu
et al. (2017) used a hybrid system comprising of CRF,
Bi-LSTM,Word2Vec, and dictionaries for Named En-
tity Recognition (NER) on clinical notes. While Bi-
LSTM and embedding-based models have better gen-
eralisation ability, they too have limitations when it
comes to extracting large chunks Yang et al. (2019).

To address this, further studies have included more
syntactic and semantic information while being cog-
nizant of temporal information. Yogarajan et al.
(2020) reports that of 18 published systems that
achieve an F-measure of 95% or more of academic
benchmarks, 10 were hybrids of rules and models,
and 8 used only models.

3. Architecture

3.1. Scalable NLP Pipeline

The proposed system is built on top of the Spark
NLP library Kocaman and Talby (2021b), a popular
open-source library that supports most NLP tasks
and can uniquely scale up both training and infer-
ence on any Apache Spark cluster. The system can
be deployed on a single machine (local mode) or on
an Apache Spark cluster with no code changes. De-
identification is implemented as an NLP pipeline - a
sequence of processing steps - that runs as one end-
to-end solution including text pre-processing, deep-
learning based models, contextual rules, and obfus-
cation. The pipeline was externally benchmarked to
de-identify 500,000 patient notes in 2.46 hours on 10
single-CPU commodity servers Tomer (2021). No
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code changes are required to scale to a cluster Ko-
caman and Talby (2021b).
The pre-trained de-identification pipelines can be

broken down into 5 stages: text pre-processing and
feature generation, named entity recognition, contex-
tual rules, chunk merging, and obfuscation. Strong
data to enable future re-identification is also included.

Figure 1: Full pipeline architecture

3.1.1. Text Pre-Processing

The input text must first pass through a series of
stages which include a document assembler, sentence
detector, tokenizer, and word embeddings generator.
These pipeline components create the appropriate
features for subsequent components to identify PHI
tokens and then obfuscate PHI chunks.
The first step is the document assembler that takes

in raw text data and creates the first annotation
which can then be used as inputs to downstream
tasks. The next step in the pipeline involves sentence
detection. This is based on a general-purpose deep-
learning based model Schweter and Ahmed (2019) for
sentence boundary detection. The model was tuned
specifically for clinical text in English, and multilin-
gual text for other languages. Using rule-based sen-
tence boundary detection performs poorly on real-

world clinical notes, which often do not use standard
punctuation and grammar.

The next step is tokenization, which involves split-
ting sentences into smaller sub-units to generate
meaningful features for the NER task. The tokeniza-
tion method used in de-identification pipelines is a
rule-based tokenization which separates characters on
white spaces and other special characters. Once the
input text has been broken down into tokens, each to-
ken gets assigned a word embedding feature vector.
The word embeddings used in the de-identification
pipelines are custom-trained using a skip-gram model
on PubMed abstracts and case studies for learning
distributed representations of words using contextual
information. The trained word embeddings have a di-
mension of 200 and a vocabulary size of 2.2 million.

3.1.2. Named Entity Recognition (NER)

The NER model is the next step in the pipeline.
Its goal is to detect PHI elements such as names
of patients, doctors, organizations, hospitals, streets,
cities, countries, professions, dates, ages, and oth-
ers. NER models are at the core of de-identification
pipelines, as they have can generalize on unseen data
better, and predict exact entity spans of PHI ele-
ments, causing minimum data loss. Our NER model
implementation is based on a BLSTM architecture as
explained in Kocaman and Talby (2021a).

Using a combination of publicly available resources
and in-house datasets, we curated two versions of
NER training datasets and then trained two NER
models for each of the seven supported languages.
These include a coarse version with seven entity types
(Name, Date, Organization, Location, Age, Contact,
ID) detected and a granular version with thirteen
(Patient, Doctor, Hospital, Date, Age, Profession,
Organization, Street, City, Country, Phone, User-
name, Zip) entity types.

3.1.3. Contextual Rule Engine

While NER models generalize better than rule en-
gines, there are cases where rule engines can provide
much needed flexibility. For example, different ge-
ographical, political, administrative regions, and or-
ganizations have different unique identifier numbers
(e.g. Patient IDs, License Number, Phone Numbers
etc). Including a regex based parser in the same NLP
pipeline provides the ability to complement NER
models in cases where a specific PHI identifier type is
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not supported by the NER model, without retraining
the NER models.
In addition to regex matching, the contextual rule

engine supports prefix and suffix matching for reduc-
ing false positives, and the proximity and length of
context matching can also be adjusted to avoid false
positives. For example, age can be a numeric num-
ber, but the unit of age (e.g month, year, etc) would
be suffix matching within a short span within the
context string.
Another benefit of having the rule engine and NER

model in the same pipeline is to reduce label errors
by the NER model. For example, the NER model can
get confused between patient ID numbers and med-
ical record numbers, but the contextual rule engine
using prefix and regex matching of the contextual rule
engine’s prefix and suffix matching capability can be
used to develop heuristics, depending on document
layout.

3.1.4. Chunk Merger

Up to this point in the pipeline, PHI chunks will have
been identified by both models and rules. The next
step is to merge these outputs together to resolve
conflicting or overlapping detections and increase the
overall accuracy of the pipeline.
The chunk merger does this by assigning a priority

to each entity type detected by each model type. This
is configurable based on the needs of each use-case.
For example, a SSN identified by rules would usu-
ally get higher priority over any overlapping chunk
identified by the NER model.

3.1.5. Masking or Obfuscation

The final step of the pipeline is called de-identification
and its role is to generate the anonymized text. This
can be achieved by applying either masking or ob-
fuscation. Masking essentially replaces the PHI iden-
tifier with either their type or asterisks. These as-
terisks can either be of fixed character length for
all PHI chunks detected in the text, or of the same
length as the PHI chunk being replaced (see Figure
1); we found the later option to be helpful while de-
identifying pdf and image documents, as it minimizes
any changes to the original document layout.
Obfuscation involves replacing PHI with surrogate

values that are semantically, and linguistically
correct. The following example shows the origi-
nal (identifiable) text followed by the same text
masked by entity type, masked by asterisks, masked

with the age field white-listed, and finally obfuscated:

Jane is a 48-year-old nurse from Memphis.
PATIENT is a AGE PROFESSION from CITY.
*** is a *** *** from ***.
*** is a 48-year-old *** from ***.
Gina is a 45-year-old teacher from Fresno.

Since the system is designed to support de-
identification of PDF, DOCX, DICOM, and Image
files, preserving the text layout is important. Ob-
fuscating the text with surrogate values having simi-
lar length is relatively challenging that simple mask-
ing, therefore, we divided the vocabularies in multi-
ple groups based on character length for faster search
during inference. The module first searches for the
matching group - based on chunk length - and then
applies logic additional logic to select best surrogate
values that maintain data integrity as explained in
section 5.2.

3.1.6. Re-Identification Vault

Should users require the ability to re-identify de-
identified PHI text - for example, to support emer-
gency unblinding - the pipeline provides an option
to save the mappings between obfuscated/masked
chunks and their original form in an auxiliary column.
The mapping can then be saved as a Parquet file
(a column-oriented data storage format), which can
later be used as input to a re-identification pipeline.
The Re-Identification pipeline uses the saved map-
ping information to regenerate the original text.

4. Experimental Setup & Results

This section describes benchmark datasets, evalua-
tion metrics, and an overview of the setup. We con-
ducted two experiments:

1. Accuracy evaluation on the 2014 i2b2 de-
identification challenge dataset Stubbs et al.
(2015).

2. Using a sample from MIMIC-III dataset Johnson
et al. (2016), benchmarking against commercial
cloud API’s.

4.1. Datasets

Datasets containing PHI data are a prerequisite for
training and evaluating de-identification solutions.
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However, for privacy reasons, they are rarely released
to the public. A few exceptions exist, where records
that have been de-identified are released by organi-
zations or researchers to advance the field of clinical
de-identification.

Our first experiment made use of a dataset released
with the 2014 i2b2/UTHealth shared task Track 1
de-identification challenge Stubbs et al. (2015) which
tests the performance of automated systems on PHI
concepts. Our second experiment consisted of an out-
of-the-box comparison of our de-identification solu-
tion against commercially available de-identification
solutions.

To conduct a fair comparison, and without knowl-
edge of the data sources used to train these licensed
models, we can confidently assume that the data
used to train these systems was a mix between pro-
prietary in-house annotated data and publicly avail-
able datasets. Keeping that assumption in mind, and
to ensure reproducibility, we randomly sampled one
hundred clinical notes as a test set from the same i2b2
de-identification dataset mentioned above and tasked
two medical doctors to annotate them and populate
ground truths for 8 types of entities: Date, Age,
Doctor, Patient, Hospital, ID, Location and Phone.
These categories were chosen to accommodate the dif-
ferences in extraction categories between the different
de-identification solution providers.

Experiments were run in a Google Colab server
(2vCPU @ 2.2 GHz, 13 GB RAM), using Apache
Spark in local mode.

4.2. Accuracy on the 2014 i2b2
De-Identification Challenge

In the first experiment, using the original training set,
we trained two NER models (coarse 7 labels, granu-
lar 13 labels) with no additional rules and component
(e.g. regex matchers, contextual parsers) and evalu-
ated on the official test set and achieved 0.955 and
0.978 micro F1 scores respectively. The detailed met-
rics for 7-labels version can be seen at Table 1 and
the metrics for granular 13-labels version can be seen
in Appendix A.

4.3. Comparison with Commercial Cloud
API’s

In the second experiment, we evaluated three of
the most widely known commercial services for de-
identification that provide APIs through which users

Table 1: NER metrics on 2014 i2b2 Challenge using
7 labels.

Entity Precision Recall F1

Contact 0.958 0.961 0.959
Name 0.968 0.956 0.962
Date 0.991 0.980 0.985
ID 0.964 0.895 0.928
Location 0.941 0.902 0.921
Profession 0.889 0.601 0.719
Age 0.955 0.936 0.945

Macro-Avg. 0.917
Micro-Avg. 0.955

can send sensitive records to identify PHI: AWS Med-
ical Comprehend (AMC), Google Cloud Platform
Healthcare API (GCP), and Microsoft Azure Text
Analytics for Health (Azure).

After standardizing the tags to accommodate the
different commercial APIs, the system ran on the one
hundred clinical notes from the i2b2 corpus. Our so-
lution and AMC had good coverage over the tags,
whereas Azure and GCP required using a combina-
tion of their de-identification APIs in combination
with other NLP APIs for covering entities such as
locations and names.

To accommodate the potential differences in chunk
boundaries identified by the different systems, we set
a threshold of 60% where each system was given a
valid detection if it covered at least 60% of the anno-
tated chunk. For example, detecting ”Children’s Hos-
pital” versus the ground truth being ”Boston Chil-
dren’s Hospital” was assumed correct. This experi-
ment is fully reproducible and will be made available
online. Azure and GCP did not provide the ability
to identify ID numbers appropriately, so ID entities
were excluded from the metric calculations.

Results show that our de-identification pipeline
outperformed all commercial APIs (see Table2). Our
system yielded an average F1 score of 0.96, whereas
AWS Medical Comprehend and Microsoft Azure Text
Analytics for Health and Google Cloud Platform
Healthcare API obtained average F1 scores of 0.94,
0.81 and 0.77 respectively.

4.4. Comparison with ChatGPT (GPT3.5)

On a selected 25 clinical notes from i2b2 dataset, our
approach demonstrates superior performance with a
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Table 2: Comparison of the de-identification pipeline with AWS Medical Comprehend (AMC), Microsoft
Azure Text Analytics for Health (Azure), & Google Cloud Platform (GCP) Healthcare API on a
sample of 100 notes.

Ours AMC Azure GCP

Entity Sample Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Age 95 1.000 1.000 1.000 0.989 0.936 0.962 0.882 0.976 0.927 0.888 0.929 0.908

Date 953 0.999 0.995 0.997 1.000 0.990 0.995 1.000 0.811 0.896 1.000 0.928 0.962

Doctor 402 0.987 0.969 0.978 1.000 0.918 0.957 0.987 0.551 0.707 0.503 0.749 0.602

Hospital 182 0.922 0.911 0.917 0.980 0.810 0.887 0.962 0.573 0.718 0.634 0.829 0.718

Location 47 0.905 0.884 0.894 0.842 0.780 0.810 1.000 0.766 0.867 0.614 0.900 0.730

Patient 115 1.000 0.930 0.964 1.000 0.904 0.950 0.949 0.667 0.783 0.545 0.424 0.477

Phone 15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.667 0.800 1.000 0.933 0.966

ID 465 0.941 0.910 0.925 0.922 0.933 0.927 - - - - - -

Macro-Avg. 0.959 0.936 0.712 0.670

Micro-Avg. 0.969 0.959 0.715 0.638

93% accuracy rate compared to ChatGPT’s 60% ac-
curacy. To maintain the conciseness of this paper,
additional details are presented in the Appendix C.

5. Key Modules

Achieving high accuracy was not enough to deliver
fully automated de-identification on large real-world
datasets. This section describes three key areas in
which innovation was required as this system should
be capable of handling close to a billion pieces of clin-
ical text around the world.

5.1. Multilingual Support

Sources of labeled training data for de-identification
are limited in availability for English - and even more
so for other languages. Training language-specific
models for each language is still necessary, since cur-
rent multi-lingual word embeddings do not provide
high accuracy and are not tuned to each country’s
medical vocabularies.

The proposed de-identification system is designed
to be extendable to other languages with minimal ef-
fort. Adding a language typically requires 1-2 weeks,
with the process being as follows:

NER: Achieving coverage over seven languages re-
quired re-purposing data commonly used for other
tasks, and assembling different sources to cover all
PHI entity types. Most of the PHI entity types can
be found in the annotated datasets shared publicly by

the community, such as ConLL Sang and De Meul-
der (2003) and OntoNotes Weischedel et al. (2011).
These datasets include a subset of PHI entity types
- Name, Location, Date - in many languages. How-
ever, these annotated datasets do not represent the
contextual structure that a clinical note may have.

Translation: When data sources were exhausted,
translation became another solutions to increase cov-
erage and robustness of the training datasets. When-
ever there is a coverage issue with certain entity type,
we start with an annotated dataset from another sim-
ilar language (i.e. English), mask the PHI entities
in it (using the English model), then translate the
entire sentence using Marian neural machine trans-
lator models Junczys-Dowmunt et al. (2018), and
then replaced the mask with the equivalence from
other language (e.g. English names replaced by Ger-
man names). This results with a brand new sentence
having that entity (requiring a review by a German-
speaking medical doctor).

Contextual Rules: The type and format of the
entities differ from one country to another - even for
countries that speak the same language, like the US
and UK. This is because clinical documentation is
taught, written, and used differently in each country.
As a result, all the rules and patterns are manually
modified, by a medical doctor from each country, to
reflect each country’s corresponding language.

Following these steps, and given that the NLP
pipeline and each stage are modular and configurable,
providing end-to-end support for a new language once
its dataset is available requires only a few lines of
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code. Accuracy metrics for currently supported lan-
guages can be seen in Appendix B.

5.2. Consistent Data Obfuscation

Obfuscation is more popular in practice than mask-
ing, for two reasons. First, it generates a more re-
alistic looking result for testing, demos, or training
downstream models. Second, it provides an extra
layer of safety, since in contrast to masking, an at-
tacker cannot tell when a PHI entity was missed.

However, obfuscation comes with its own set of
challenges, and is considered a barrier to real-world
automated de-identification Yogarajan et al. (2020).
For example, consider the following text:

Jane Doe is a lovely 78 y.o. lady with a history
of breast cancer. Jane was diagnosed with T2DM in
April 2020.

Given this example, the obfuscation needs to get
several things right to retain readability and consis-
tency:

• Name consistency: Mapping Jane Doe and
Jane to the same first name. If we map Jane
Doe to a fake name (e.g. Nancy Smith), the next
name entity (Jane) that corresponds to the same
patient should also be replaced by Nancy. In ad-
dition, when there are multiple clinical notes for
the same patient, the same mapping should be
made across different documents to have a con-
sistent obfuscation for several concerns such as
traceability or regulations. Hence, this mapping
can be aligned to patient IDs so that every pa-
tient will get different mapping even for the same
names (e.g. ”Jane” will be mapped to ”Mary”
for patient-1 whereas the same name is mapped
to ”Jen” for patient-2).

• Gender consistency: Mapping Jane to a femi-
nine American name (or a feminine British name
if needed).

• Age consistency: Specifying a proper age
range (i.e. age groups such as 5-12 years for chil-
dren, 20-39 years for adults etc.) to make the
obfuscation within that age group. The age ob-
fuscation should be consistent here due to some
phrases (e.g. lady, lovely) that hint to an adult
lady. Hence we should replace 78 with a reason-
able age (e.g. 40 but not 5 or 12 ).

• Clinical consistency: Note that Jane needs to
”remain female” also because she has a history
of breast cancer.

• Day shift consistency: Shifting the days
based on a predefined list of shift values per pa-
tient ID (e.g. plus 2 days for patient-1, minus
5 days for patient-2 etc.) as well as allowing a
completely random shift given a range.

• Date format consistency: If April 2020 needs
to be shifted by a random number of days, then
the result should be in the same format (i.e.
March 2020 and not 3/3/2020 ). Moreover, since
there is no day information in the original date
entity and it is not in a proper date format, this
date should be normalized to a proper date for-
mat (e.g. 04/1/2020 ) at first in order to apply
a day shift.

• Length consistency: In order to keep the
length of the original text intact, it’s often re-
quired to replace the selected entities with the
same length of fake entities. If same length is
not possible, adding or deleting characters can
force it into the same length.

Two components were built to facilitate this. First
is a normalization module that normalizes dates,
ages, names, and addresses. It ensures that multi-
ple occurrences of any concept are normalized to the
same concept, even if they are mentioned differently
throughout the text. In addition, date normaliza-
tion is also enabling day shifting by normalizing the
unstructured dates into proper format so that shift
operation can be applied (e.g. 12Apr2022 will be nor-
malized to 04/12/2024).

Second is a faker module that generates random
data to replace original concepts. To maintain data
integrity, the module is cognizant of people’s titles,
genders, and addresses to generate semantically cor-
rect values. As a second line of defence, we added
the option of masking or total random obfuscation of
concepts that can not be normalized, especially dates.
Also, since date formats are particularly sensitive to
geographical locations, we added the option of con-
verting all dates to certain formats for consistency.

Like masking, the faker can make the text appear
as close as possible to its original form (based on
Levenshtein distance) to maintain formatting. This
module also allows users to feed their own look-up
dictionary for obfuscating the detected PHI chunks
with custom replacements. Every field can be sepa-
rated and configured by its own rules. The system
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comes with pre-built faker models for every language
it supports, so that for example ”Danilo Ramos de
Madrid” can be obfuscated to a ”Jose Fernando de
Alicante” instead of to an American-biased name and
city.

5.3. Merging Rules and Models

A key requirement for the system was supporting fast
deployments as a new de-identification project on a
large unseen dataset should be measured in days, not
months. This meant that models could not be tuned
on newly annotated data every time, and configura-
tion largely fell to the Chunk Merger component.

The ability to easily configure which model or rule
would take priority on each entity type proves criti-
cal to overall accuracy - by composing rules (which
can have high precision but low recall) with models
(which may have high recall but lower precision). To
measure the accuracy impact of this hybrid approach,
we carried out error analyses in all seven languages
quantifying the effects of contextual rules on the final
metrics of the full de-identification pipeline.

This involved comparing the de-identification with
NER models versus the full de-identification pipeline
(which combines both models and rules). Since not
all of the PHI entities are complemented by contex-
tual parsers, we only picked four entities: Age, Date,
ID, Location.

In some use cases, we may not need the precise
entity type of any PHI in masking modes: as long as a
PHI entity is detected, it doesn’t matter if it’s a Name
or Location entity for masking. Therefore, we also
evaluated the binary PHI recognition performance of
our solution. All tests were run on internally curated
and annotated datasets for each language which were
not used in the training process.

Results show that the full de-identification pipeline
has an average improvement of around 10% across all
entities. The most drastic improvements occurred in
the Location and Age entities, with improvements of
12% and 5% respectively. When it comes to binary
PHI recognition performance, the gain was between 1
and 4%, exceeding 95% accuracy in all the languages
supported, even exceeding 99% in some of the lan-
guages (see Table 3).

Beyond the overall accuracy gain, the Chunk
Merger has proven useful in tackling several long-
standing challenges in medical text de-identification.
Consider this text:

John was Diagnosed with Parkinson’s by Dr.
Hopkins at John Hopkins Hospital.

There are four entities here: the patient’s name,
their diagnosis (Parkinson’s disease), the doctor’s
name, and the hospital. The diagnosis is not PHI
and it’s important to keep it in the de-identified text,
otherwise the utility of the whole note diminishes.
The three other entities also have to be corrected,
classified and obfuscated to separate names.

This is addressed in the proposed system by ap-
plying multiple models and rules, and then using the
chunk merger to prioritize conflict resolution. To re-
solve the particular challenge in the above example,
we leverage a pre-trained clinical NER model that
detects disease names in the pipeline, and use the
Chunk Merger to override overlapping identified en-
tities by giving the disease model a higher priority
than the PHI detection model. This way, the disease
name will have been identified both as a disease and
a patient name, but the patient name label will have
been discarded in the merging process.

6. Conclusion

De-identification of electronic health records (EHR)
is essential to enabling secondary use of medical data
for a broad range of safety, research, and public health
use cases. Recent solutions achieve human-level ac-
curacy for de-identifying free-text clinical notes on re-
search datasets, but gaps remain in reproducing this
in large-scale, real-world settings.

This study describes a medical text de-
identification system that is first to achieve the
trifacta of state-of-the-art accuracy of the data
science models, fulfilling the engineering require-
ments of high-compliance production systems, and
independently certified success in multiple real-
world deployments. Delivering fully automated
de-identification in practice requires solving chal-
lenges beyond accuracy - consistent obfuscation, fast
deployments, scalability on commodity hardware,
configurability, and the ability to support a new
language within a few weeks.

While further work remains to apply the solution
more broadly, quickly, and cheaply, this and simi-
lar solutions are already being widely deployed, fun-
damentally changing the landscape of clinical data
availability. This unlocks new opportunities for the
secondary use of medical data in a broad range of
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Table 3: Comparison of NER models with full pipelines enriched with regex and contextual parser using
Macro-F1 scores.

English German Spanish Portuguese Italian French Romanian

Entity NER Pipeline NER Pipeline NER Pipeline NER Pipeline NER Pipeline NER Pipeline NER Pipeline

Age 0.910 0.967 0.944 0.965 0.971 0.987 0.963 0.984 0.969 0.984 0.933 0.978 0.840 0.933

Date 0.973 0.988 0.999 0.999 0.965 0.978 0.989 0.995 0.985 0.986 0.991 0.997 0.915 0.952

ID 0.930 0.974 0.974 0.984 0.978 0.994 0.978 0.996 0.980 0.988 0.966 0.983 0.893 0.952

Location 0.803 0.927 0.797 0.855 0.870 0.903 0.958 0.968 0.971 0.985 0.868 0.956 0.596 0.709

Avg. 0.904 0.964 0.929 0.951 0.946 0.965 0.972 0.986 0.976 0.986 0.939 0.979 0.811 0.887

PHI 0.948 0.982 0.958 0.966 0.974 0.983 0.992 0.994 0.984 0.992 0.986 0.996 0.930 0.957

safety, research, and public health use cases, in a safer
and compliant manner.
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Appendix A. Performance on 2014
i2b2 Challenge, 13-labels
granular version dataset

Table 4 illustrate performance metrics on granular
entities for the 2014 i2b2 challenge.

Table 4: NER metrics on 2014 i2b2 Challenge using
more granular 13 labels.

Entity Precision Recall F1

Patient 0.958 0.977 0.967
Hospital 0.98 0.965 0.972
Date 0.996 0.995 0.996
Organization 0.927 0.826 0.874
City 0.953 0.944 0.949
Street 0.998 0.995 0.996
Username 0.989 0.921 0.954
Device 0.5 0.2 0.286
Fax 1.0 0.667 0.8
Idnum 0.873 0.948 0.909
State 0.949 0.99 0.969
Email 0.0 0.0 0.0
Zip 0.979 0.986 0.982
Medicalrecord 0.989 0.971 0.98
Other 0.867 0.619 0.722
Profession 0.968 0.887 0.925
Phone 0.983 0.974 0.978
Country 0.896 0.945 0.92
Healthplan 1.0 1.0 1.0
Doctor 0.986 0.974 0.98
Age 0.97 0.959 0.964

Macro-Avg. 0.863
Micro-Avg. 0.978

Appendix B. Metrics on multiple
languages

Table 5 shows performance metrics on seven different
languages.

Appendix C. Comparison with
ChatGPT

C.1. Study Design

Data Selection: We selected 25 clinical discharge
notes from the 2014 i2b2 Deid Challenge dataset and
annotated further to reduce label errors.

Scope: The following entities are considered dur-
ing this comparison: ‘ID’, ‘DATE’, ‘AGE’, ‘PHONE’,
‘PERSON’, ‘LOCATION’, ‘ORGANIZATION’.

Model Preparation: To prevent data leakage, we
examined the dataset of the selected NER models for
PHI detection, retraining some models from scratch
for evaluation purposes.

Prediction Collection: We ran the prompts per
entity in a few shot settings, and collected the pre-
dictions from ChatGPT, which were then compared
with the ground truth annotations.

Performance Comparison: We obtained predic-
tions from the corresponding NER models and Con-
textual Parsers and compared those with the ground
truth annotations as well (even a single token over-
lapping was considered a hit).

Reproducibility: All prompts, scripts to
query ChatGPT API (ChatGPT-3.5-turbo, tempera-
ture=0.7), evaluation logic, and results will be shared
publicly at a Github repo after blind review process.
Additionally, a detailed Colab notebook to run De-
Identification modules step by step will also be shared
publicly.

C.2. Results

As can be seen in Figure 2, out of 562 sensitive enti-
ties, ChatGPT failed to identify 227, resulting in an
accuracy of approximately 60%. Among its findings,
20% were partially matched (with at least one token
overlapping with the ground truth), while 41% were
fully matched. We then processed the same docu-
ments using our proposed De-Identification pipeline.
Out of the 562 sensitive entities, it failed to find 41,
achieving an accuracy of around 93%. Of these find-
ings, 14% were partially matched (with at least one
token overlapping with the ground truth), and 79%
were fully matched.
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Figure 2: The performance of ChatGPT and our proposed approach in de-identifying PHI data within
clinical discharge notes. The comparison includes the total number of entities, accuracy rates, and
the percentage of partially and fully matched entities for both tools. Our approach demonstrates
superior performance with a 93% accuracy rate compared to ChatGPT’s 60% accuracy.

Table 5: Metrics on multiple languages.

Entity English German French Spanish Italian Portuguese Romanian

Patient 0.9 0.97 0.94 0.92 0.91 0.95 0.87
Doctor 0.94 0.98 0.99 0.92 0.92 0.93 0.96
Hospital 0.91 1.00 0.94 0.86 0.90 0.90 0.8
Date 0.98 1.00 0.98 0.99 0.98 0.98 0.91
Age 0.94 0.99 0.86 0.98 0.98 0.98 0.97
Profession 0.84 1.00 0.81 0.91 0.89 0.90 0.83
Organization 0.77 0.94 0.77 0.83 0.74 0.97 0.37
Street 0.98 0.98 0.90 0.94 0.98 1.00 0.99
City 0.83 0.99 0.86 0.84 0.97 0.98 0.96
Country 0.81 0.98 0.90 0.87 0.93 0.91 0.82
Phone 0.94 0.88 0.98 0.90 0.98 0.99 0.98
Username 0.92 1.00 0.92 0.74 0.91 0.88 -
ZIP 0.99 - 1.00 0.99 0.99 0.99 0.98

Macro-Avg. 0.904 0.901 0.912 0.899 0.929 0.951 0.803
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