Everybody loves vector search and enterprises now see its value thanks to the popularity of LLMs and RAG. The problem is that prod-level deployment of vector search requires boatloads of CPU, for search, and GPU, for inference, compute.The bottom line is that if deployed incorrectly vector search can be prohibitively expensive compared to classical alternatives. The solution: quantizing vectors, leveraging hardware-accelerated optimizations and performing adaptive retrieval. These techniques allow you to scale applications into production by allowing you to balance and tune memory costs, latency performance, and retrieval accuracy very reliably.This session shows how you use the open-source Weaviate vector database to perform real-time billion-scale vector searches – on your laptop! This includes covering different quantization techniques, including product, binary, scalar, and matryoshka quantization that can be used to compress vectors trading off memory requirements for accuracy. I’ll also introduce the concept of adaptive retrieval where you first perform a cheap hardware-optimized low-accuracy search to identify retrieval candidates using compressed vectors followed by a slower, higher-accuracy search to rescore and correct. These quantization techniques when used with well-thought-out adaptive retrieval can lead to a 32x reduction in memory cost requirements at the cost of ~ 5% loss in retrieval recall in your RAG stack.
Everybody loves vector search and enterprises now see its value thanks to the popularity of LLMs and RAG. The problem is that prod-level deployment of vector search requires boatloads of...
Current US legislation prohibits AI applications in recruiting, healthcare, and advertising from discrimination and bias. This requires organizations who deploy such systems to test and prove that their solutions are...
Leveraging Generative AI, LLMs, and Google Search Wrappers for competitor analysis empowers the procurement team with real-time, data-driven insights. Generative AI and LLMs can process vast amounts of unstructured data,...
A report dedicated to the most current research aimed at using Large Language Models (LLMs) in the field of Sentiment Analysis. This task involves extracting the author’s opinion from the...
In this speech, I will provide an overview of the current challenges faced by healthcare professionals in accessing and interpreting vast amounts of patient data. I will discuss how our...